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bstract

In this paper, the Keller–Box method has been applied to the coupled one-dimensional electrochemical transport equations in order to simulate
ead-acid batteries numerically. The advantages and disadvantages of this method have been discussed. The results indicate that the Keller–Box
ethod is a suitable method for integration of electrochemical transport equations both in integrated and multi-region formulation. The boundary
onditions and interface conditions (in the case of multi-region approach) can be implemented easily and require no special routine (for off-diagonal
erms). In addition, the effect of acid concentration dependency of open circuit voltage has also been investigated.

2005 Elsevier B.V. All rights reserved.
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. Introduction

Computational fluid dynamics (CFD) can be used to solve
he governing equations of battery dynamics. This makes sig-
ificant progress toward an insightful understanding of battery
erformance and detailed characteristics of its behavior. To have
good understanding of battery performance, different design

arameters of the lead-acid batteries should be analyzed. Tradi-
ionally, these design parameters are evaluated experimentally
hich is time consuming and costly. Numerical simulation of

he battery is an alternative to evaluate the battery performance
nd optimizing the design parameters. Another advantage of the
FD modeling is that it can be used as a virtual model for bat-

ery with which the necessary parameters for dynamic modeling
ust be obtained. In this method, the partial differential system

f equations governing the behavior of the battery dynamics is
olved numerically using advanced CFD techniques.

The governing equations of the battery dynamics [1] have
een developed in different forms. Gu et al. [6] proposed a
ulti-region system of equations to simulate the battery dynam-

cs. In this model, each region was studied separately, i.e. for
ach region (Fig. 1) a system of transport equations was given.

o relate the regions at their common boundaries, a set of

nterface conditions was also proposed. This system of equa-
ions was solved numerically with finite-difference method. To
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eep second-order accuracy at interfaces, off-diagonal elements
ppear in the dicretized system of equations destroying the tridi-
gonal nature of the resulting matrix. Fan and White [2] proposed
n auxiliary routine called MBAND to treat the off-diagonal ele-
ents without losing the second-order accuracy.
Later, Gu et al. [7] introduced an integrated formulation for

attery dynamics. In this approach, the whole battery was con-
idered as a model volume and the transport equations were
erived for the whole cell volume. With this formulation, the
nterface condition is no longer necessary. The proposed system
f equations was solved numerically by means of finite-volume
ethod.
In this study, the Keller–Box method is used for numer-

cal integration of transport equations of battery dynamics.
his method can be implemented on both approaches. The
eller–Box method is an implicit method which is second-
rder accurate in both time and space. Since only two points are
nvolved in discretization, a nonuniform grid can be used without
ny difficulty. In addition, the Keller–Box method works both
ith the unknown functions and their derivatives at each grid
oint simultaneously. This property would ease numerical for-
ulation as well as implementation of boundary conditions and

nterface conditions (if any). The disadvantage of the method
s the size of coefficient matrix increases due to introducing the
erivatives as unknowns which increases the computational cost.

ut, once the solution is obtained, the derivatives of unknown

unctions are available and no new further formulation is needed
o obtain the derivatives from the unknown functions as is done
n the other numerical methods. The results are compared with
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Nomenclature

a coefficient
A specific electroactive area (cm2 cm−3)
c acid concentration (mol cm−3)
D diffusion coefficient (cm2 s−1)
F Faraday constant, 96,487 C mol−1

I applied current density (A cm−2)
j transfer current density (A cm−2)
k conductivity of liquid (S cm−1)
m molality of the acid (mol kg−1)
t time (s)

Greek letters
ε porosity
σ conductivity of solid matrix (S cm−1)
φ electric potential (V)

Subscripts and superscripts
D pertinent to diffusion
eff effective, corrected for tortuosity
ex exponent in the effective property
l liquid solution
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Table 1
Governing equations of the battery dynamics

Conservation of charge in solid ∇ · (σeff∇φs)− Aj = 0
C
S

c
b
d
c
o

a
e
p

σ

w

t
t

�

o initial value
s solid phase

he results of previous investigators. Furthermore, the effect of
cid concentration dependency of open circuit potential on cell
oltage and acid consumption is studied.

.1. Governing equations

A typical lead-acid cell is shown schematically in Fig. 1 and
onsists of the following regions: a lead-grid collector at x = 0

hich is at the center of the positive electrode; a positive PbO2

lectrode; electrolyte reservoir; a porous separator; a negative Pb
lectrode; finally, a lead-grid collector at x = l which is at the cen-
er of the negative electrode. The positive and negative electrodes

Fig. 1. Schematic illustration of a lead-acid cell.
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onservation of charge in liquid ∇ · (keff∇φl)+ ∇ · (keff
D ∇(ln c))+ Aj = 0

pecies conservation ∂(εc)
∂t
= ∇ · (Deff∇c)+ a2

Aj
2F

onsist of porous solid matrices whose pores are flooded by a
inary sulfuric acid, H2SO4. The model is assumed to be one-
imensional perpendicular to the face of the electrode. During
harge and discharge, the following electrochemical reactions
ccur in the positive and negative electrodes:

PbO2 electrode:

PbO2(s) + HSO−4 + 3H+ + 2e−
discharge−−−−−−→←−−−−−−

charge
PbSO4(s) + 2H2O

Pb electrode:

Pb(s) + HSO−4
discharge−−−−−−→←−−−−−−

charge
PbSO4(s) + H+ + 2e−

The governing equations with one-dimensional assumption
re summarized in Table 1. In these equations, the effective prop-
rties, i.e. σeff, keff and keff

D , are corrected to account for electrode
orosity as follows:

eff = σ(1− ε)ex, keff = kεex, keff
D = kDεex (1)

here (1− ε) is the volume fraction of conducting solid matrix.
Details of the governing equations can be found in [7] except

hat the equilibrium potential �UPbO2 (at 25 ◦C) is also added
o the model from an empirical equation presented by Bode [8].

UPbO2 = 1.9228+ 0.147519 log(m)+ 0.063552 log2(m)

+ 0.073772 log3(m)+ 0.033612 log4(m) (2)

here m is the molality of the sulfuric acid. Another empiri-
al equation based on literature data at 25 ◦C is used to relate
oncentration, c, to molality, m

= 1.00322× 103c + 3.55× 104c2 + 2.17× 106c3

+2.06× 108c4 (3)

.2. Initial/boundary conditions

To solve the system of equations, initial and boundary con-
itions for the primary variables are necessary. The initial con-
ition for acid concentration is c = co. Two approaches can be
aken to find the initial conditions for potential in solid and liquid
hich are:
1) Solve the first two steady equations given in Table 1 with
constant c = co.

2) Solve the whole system with a very small time step, i.e.
10−4 s.
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means the negative electrode is overdesigned.

Fig. 3 shows the variations of charge across the electrode
at different times. The results show that during the battery
V. Esfahanian, F. Torabi / Journal

The appropriate boundary conditions at x = 0 and l for c and φl
re ∂c

∂x
= ∂φl

∂x
= 0; the boundary condition for potential in solid is

s = 0 or V for a given voltage, or−σeff ∂φs
∂x
= I for a prescribed

urrent density. Positive values of I refer to charging, whereas
egative values of I denote discharging.

. Numerical procedure

To solve the system of equations by the Keller–Box method,
t should be first converted into a system of first-order partial
ifferential equations [3]. The details of the Keller–Box method
an be found in standard CFD books and have been applied
requently in boundary layer theory [4]. By defining ∂φs

∂x
= u,

∂φl
∂x
= v and ∂c

∂x
= w and substituting into the system of equa-

ions, one can obtain:

∂(σeffu)

∂x
= +Aj

∂φs

∂x
= u

∂(keffv)

∂x
= −Aj − ∂

∂x

(
keff

D w

c

)

∂φl

∂x
= v

ε
∂c

∂t
= ∂(Deffw)

∂x
+ (a2 − a1c)

Aj

2F
∂c

∂x
= w

(4)

here c, φs and φl, related by the well-known Butler–Volmer
quation:

= io

(
c

cref

)γ {
exp

(
αaF

RT
η

)
− exp

(−αcF

RT
η

)}

nd overpotential η is defined as η = φs − φl −�UPbO2 for
ositive electrode and η = φs−φl for negative electrode, where
UPbO2 is open circuit potential. The system of Eq. (4) together
ith proper initial and boundary conditions mentioned above
akes a complete set of equations. To solve this system of equa-

ions, it should be linearized and iteratively solved (for example,
sing Newton iteration).

The transport equations for potentials in solid and liquid are
lliptic partial differential equations (PDE). Mathematically, an
lliptic PDE with Newman type of boundary conditions in all of
he boundaries of domain has a unique solution if: (a) it satisfies
he compatibility equation and (b) at least one value is known
nside the domain.

Compatibility equation in battery dynamics is interpreted as
he conservation of charge. It means that the amount of charge
hat enters the cell at one electrode should leave the cell at the
ther electrode. To have a unique solution, one should specify a
alue for potential in one point; for example, φs = 0 at the cen-
er of the positive electrode. Then, φl at the center of positive

lectrode can be obtained using compatibility equation [5]. All
he potentials then are calculated related to this reference poten-
ial. Without this reference point, a unique solution cannot be
btained.
ig. 2. Distribution of acid concentration across the cell during discharge.

. Results

The system of governing equations has been solved using the
eller–Box method. To verify the above-mentioned procedure,

he discharge problem of a lead-acid battery has been simulated.
his sample has been studied by Gu et al. [6] and reproduced by
u et al. [7]. All the necessary parameters are the same as the
nes used by Gu et al. [7].

In Fig. 2, the variations of acid concentration in time levels
, 60 and 105 s are shown. The figure indicates that the results
f present simulation agree well with the previous studies [6,7].
s it can be seen, when the cell reaches cut-off voltage (i.e.

= 105 s), the acid is totally consumed in positive electrode. But
n the negative electrode, the acid is not totally consumed which
Fig. 3. Distribution of charge across the cell during discharge.
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Fig. 4. Voltage of the cell during discharge.

ischarge, the amount of charge in both electrodes decreases.
ut at the end of discharge, the electrodes still have a lot of
harge which means these electrodes are not fully utilized.

Fig. 4 shows the simulated voltage of the battery cell versus
ime. The results of the present work match very well with the
esults of the other researchers [6,7].

In the previous works [6,7], the open circuit potential
�UPbO2 ) was taken to be constant. To get a more accurate simu-
ation, the effect of acid concentration dependency of �UPbO2 is
onsidered by introducing Bode relation [8] into the code. Fig. 5
hows the comparison between the two results. As it can be seen,
y considering the effect of acid concentration dependency of

he open circuit potential, the voltage of the cell drops faster and
ut-off voltage occurs at approximately 90 s instead of 105 s.

Fig. 6 shows the acid concentration profile in both cases. At
he end of discharge, the acid is not totally consumed in both

ig. 5. Effect of modeling the open circuit potential on cell voltage using Bode
elation.
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ig. 6. Effect of modeling the open circuit potential on acid concentration using
ode relation.

lectrodes (comparing to the first simulation) and it means that
oth electrodes are overdesigned.

. Conclusions

The system of transport equations of battery dynamic has
een solved numerically using the Keller–Box method. The
esults indicate that the Keller–Box method is a suitable method
or integration of electrochemical transport equations both in
ntegrated and multi-region formulation. The boundary con-
itions and interface conditions (in the case of multi-region
pproach) can be implemented easily and require no special rou-
ine. The developed computer code is capable of simulating lead-
cid batteries. Comparisons were made between the simulation
esults and the results of other researchers. Good agreement was
btained and in addition, the effect of acid concentration depen-
ency of open circuit voltage was also investigated.
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